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older men (mean ± SD age: 69.9 ± 4.6  years) were 
studied based on competitive status. The serum con-
centrations of dehydroepiandrosterone (DHEA), total 
testosterone (T) and estradiol were quantified using 
liquid chromatography mass spectrometry. Intra-
muscular electromyographic signals were recorded 
from vastus lateralis (VL) during 25% of maximum 
voluntary isometric contractions and processed to 
extract MU firing rate (FR), and motor unit poten-
tial (MUP) features. After adjusting for athletic sta-
tus, MU FR was positively associated with DHEA 
levels (p = 0.019). Higher testosterone and estradiol 

Abstract Long-term exercise training has been 
considered as an effective strategy to counteract age-
related hormonal declines and minimise muscle atro-
phy. However, human data relating circulating hor-
mone levels with motor nerve function are scant. The 
aims of the study were to explore associations between 
circulating sex hormone levels and motor unit (MU) 
characteristics in older men, including masters athletes 
competing in endurance and power events. Forty-three 
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were associated with lower MUP complexity; these 
relationships remained significant after adjusting for 
athletic status (p = 0.006 and p = 0.019, respectively). 
Circulating DHEA was positively associated with MU 
firing rate in these older men. Higher testosterone lev-
els were associated with reduced MUP complexity, 
indicating reduced electrophysiological temporal dis-
persion, which is related to decreased differences in 
conduction times along axonal branches and/or MU 
fibres. Although evident in males only, this work high-
lights the potential of hormone administration as a 
therapeutic interventional strategy specifically target-
ing human motor units in older age.

Keywords Circulating sex hormones · Androgens · 
Electromyography · Muscle · Motor unit · Masters 
athletes

Introduction

Ageing of the neuromuscular system is a complex 
process encompassing numerous pathophysiological 
conditions which is further compounded by sedentary 
behaviour [1]. The failure to maintain regular physical 
exercise while advancing in age not only induces weak-
ness of the extremities [2] but also increases the prob-
ability of developing chronic disease [3] and associated 
co-morbidities [4]. As such, masters athletes provide 
a useful model to examine the effects of inherent age-
ing disassociated from negative factors such as physi-
cal inactivity [5]. Although some aspects of muscle 
strength may be maintained in masters athletes when 
compared to age-matched controls [6], this finding is 
equivocal [7] and progressive muscle atrophy demon-
strates that lifelong exercise does not completely offset 
the muscle mass and strength decline caused by ageing 
[8]. A range of additional factors are involved, such as 

circulating sex hormones, which is further mediated by 
levels and/or types of physical activity [9]. Collectively, 
these factors also influence neural adaptations with age.

The final element of the peripheral motor nervous 
system related to muscle contraction is the motor unit 
(MU), consisting of an efferent motor neuron and the 
unique set of muscle fibres it innervates [10]. MUs 
undergo adaptive responses to external stimuli, most 
notably a decreased number with advancing age, 
leaving some fibres denervated [11, 12]. However, 
the surviving MUs have the ability to rescue recently 
denervated adjacent muscle fibres via collateral 
axonal sprouting and formation of new neuromuscu-
lar junctions (NMJ) [13]. By recording the electrical 
activity of muscles with intramuscular electrodes dur-
ing voluntary contractions, a number of parameters 
relating to the structure and function of MUs can be 
investigated, including estimates of size, number and 
synchronicity of individual fibre activation [14].

Evidence for the preservation of MU number in 
human lifelong exercisers is ambiguous, with a study 
evidencing for [15] and others against [16–18] this 
notion. However, there is further evidence indicat-
ing a higher level of reinnervation ability in highly 
active older people. Compared with non-trained age-
matched individuals, masters athletes exhibited larger 
motor unit potentials (MUPs), fewer denervated 
muscle fibres, and increased fibre type grouping [15, 
19–21]. Thus, there are established benefits of exer-
cise for the ageing neuromuscular system; yet, the 
interactions with circulating sex hormones in these 
highly active older individuals are unclear.

Testosterone (T) is the primary androgenic hor-
mone and a precursor to estrogen synthesis [22], and 
has an anabolic impact on skeletal muscle [23]. Dehy-
droepiandrosterone (DHEA), the precursors of T and 
its 3-sulfooxy derivative (DHEAS), as well as the 
dihydrotestosterone (DHT) synthesised from T, have 
been reported to progressively decrease with ageing 
in men [24–28]. Estrogens are primarily produced by 
the ovaries in women but can also be synthesised in 
men through aromatization of T to estradiol (E2) in 
brain and adipose tissue [29], which also contributes to 
maintenance of muscle via estradiol receptors [30, 31].

To counteract age-related hormonal declines, exer-
cise training [32–35] and exogenous hormone admin-
istration have been employed in several studies as 
an interventional strategy in older men and women 
[36–38]. Resistance exercise training acutely elevates 
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T concentrations [39], and a recent study combining 
middle-aged (mean age 51 years) endurance and power 
athletes found them to have higher T than age-matched 
inactive subjects [40], suggesting athletic status directly 
influenced hormone levels in this age group. However, 
young individuals who regularly undergo endurance 
training have been reported to have a lower level of sex 
hormones compared to age-matched sedentary controls 
[41, 42]. In vitro models demonstrate that T treatment 
plays a neuroprotective role against the deprivation-
mediated apoptosis of human neurons [43], and animal 
studies have shown that the atrophy of motoneuron den-
drites could be attenuated or even reversed by T admin-
istration [44–46]. Both pre- and post-synaptic elements 
of the NMJ have been improved after T administration, 
independent of muscle fibre atrophy/hypertrophy, sug-
gesting that it may largely contribute to the enhance-
ment of NMJ transmission stability [47, 48]. Addition-
ally, exogenous E2 administration has been reported to 
increase axonal regeneration [49–51].

We have previously highlighted the potential role 
of androgens in peripheral neuroplasticity via associa-
tions between circulating sex hormones and electro-
physiological markers of MU function in frail elderly 
men [52], and separately, the effects of long-term 
athletic training on MU remodelling, specifically, the 
improved capacity to reinnervate denervated fibres in 
older age [53]. There is, however, limited data describ-
ing the influence of athletic status on relationship 
between hormones and MU function. The aims of the 
present study were therefore to investigate the effects 
of different lifelong exercise modalities on circulating 
sex hormone levels and neuromuscular properties, and 
to explore whether athletic status influences the asso-
ciations between circulating sex hormone levels and 
MU characteristics of the vastus lateralis (VL) muscle 
in older men. We hypothesised that higher concentra-
tions of circulating sex hormones would be observed 
in masters athletes and the athletic status would influ-
ence the associations between hormones and MU 
properties.

Methods

Ethical approval

This study was approved by Manchester Metropoli-
tan University Research Ethics Committee and the 

National Research Ethics Service Committee North-
west (15/NW/4026) in accordance with the Declara-
tion of Helsinki.

Participants

A total of 43 males aged between 60 and 85 years 
were recruited between 2014 and 2017. This 
included 18 untrained controls (CON), 14 endur-
ance masters athletes (EMA) and 11 power mas-
ters athletes (PMA). The controls, defined as rec-
reationally active, did not take part in any form of 
regular and/or intensive exercise training and were 
recruited from the local communities. The athletes 
were recruited from running clubs and national 
masters athletic competitions, as well as through 
an advertisement in a national athletics magazine. 
At the time of testing, all masters athletes were 
regularly competing within their discipline and 
were completing more than 5  h of specified train-
ing per week. Power athletes were defined as those 
that were competing and training in running events 
less than 800 m along with throw and jump events. 
Endurance athletes were defined as those competing 
in running events greater than or equal to 800 m in 
distance. Mean age-graded performance (AGP) was 
determined by taking the athlete’s highest ranked 
performance within the last 2 years and expressing 
it as a percentage of the world record for that age 
and distance. The AGP was 79 ± 10% for EMA and 
85 ± 10% for PMA, indicating a high level of per-
formance relative to respective age group records. 
All masters athletes had been training and compet-
ing specifically within their discipline since adult-
hood (> 18 years), and the median training years for 
all masters athletes was 49.8 years. All participants 
provided written informed consent.

Assessments

Anthropometry

Total body composition was assessed by dual-
energy X-ray absorptiometry (DXA) (Lunar Prodigy 
Advance, version EnCore 10.50.086; GE Health-
care, Little Chalfont, UK) with arms and legs fully 
extended in the supine position. The cross-sectional 
area (CSA) of the quadriceps muscles was obtained 
using magnetic resonance imaging (MRI) at the 
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muscle motor point, around mid-muscle belly. A 
T1-weighted turbo 3D sequence on a 0.25-T G-Scan 
(Esaote, Genoa, Italy) with participants lying supine 
was used. Continuous transversal images with a 
6-mm slice were acquired and analysed by using 
Osirix imaging software (Osirix medical imaging, 
Osirix, Atlanta, GA, USA) through tracing around 
the quadriceps muscles following the contour of the 
aponeurosis. The highest CSA was recorded as peak 
quadriceps CSA (PQCSA) [54].

Physical Function

Participants were instructed to sit in a testing chair 
with hip and knee joints positioned at 90 degrees of 
flexion. An isometric force dynamometer (purpose-
built calibrated strain gauge, RS Components Ltd, 
Corby, UK) was fastened securely 30 cm below the 
centre of the knee joint which participants were 
asked to elicit force against to perform an isometric 
knee extension. To minimise the movement of the 
upper trunk, a belt across the pelvis was fixed at the 
position of the anterior superior iliac spines. Prior 
to the assessment, a warm-up practice of submaxi-
mal contractions was required. Participants were 
then asked to perform a maximal effort, accompa-
nied by verbal encouragement and visual feedback. 
The process was repeated three times with 60 s rest 
intervals between each; the best effort was regarded 
as the maximum voluntary isometric contraction 
(MVC).

Hand grip strength was measured using a hand-
held dynamometer (Jamar, Sammons Preston Inc., 
Bolingbrook, IL, USA). After adjusting the width of 
the dynamometer for each participant, participants 
were instructed to squeeze against the handle as hard 
as possible for approximately 3  s. This process was 
repeated twice for each hand with 30-s rest intervals 
between each. The maximum contraction force was 
recorded in kilograms to the nearest 0.1 kg.

A Leonardo Jump Mechanography Platform 
(Leonardo Software version 4.2: Novotiec Medi-
cal GmbH, Pforzheim, Germany) was used to assess 
lower limb power from a countermovement verti-
cal jump [55]. Participants were instructed to flex 
the knee joint with feet approximately 30  cm apart 
(slightly narrower than shoulder width) and to jump 
as high and forcefully as possible with hands placed 
on the waist. Each participant repeated the jump 

sequence three times with approximately 30  s rest 
in between each; the highest value for relative jump 
power (W/kg) was recorded for further analysis.

A “Timed Up and Go (TUG)” test required par-
ticipants to stand from a seated position, walk a dis-
tance of 3 m (10 feet), turn around a cone, return to 
the chair and sit down again as quickly as possible. 
Time started with the command “GO” and stopped 
when the participants returned to their original seated 
position.

Hormone quantification

Following an overnight fast, a 10 ml venous 
blood sample was collected from each participant 
at ~ 0900  h. Samples were immediately centrifuged 
at 3200 rpm, for 20 min at 4 °C, carefully aliquoted 
and frozen at − 80 °C for future analysis. The serum 
concentrations of dehydroepiandrosterone (DHEA), 
DHEA sulphate (DHEAS), total testosterone (T), 
dihydrotestosterone (DHT) and total estradiol (E2) 
were obtained and analysed using a liquid chromatog-
raphy mass spectrometry high resolution system.

Intramuscular electromyography

The iEMG data were obtained through a disposable 
intramuscular concentric needle electrode (Model 
N53153; Teca, Hawthorne, NY, USA) inserted into 
VL at approximately 1–2 cm depth around the motor 
point. The signals were displayed and recorded in 
real-time via Spike2 software (Version 8.01), sampled 
at 25 kHz and bandpass filtered from 10 Hz to 10 kHz 
and stored for future offline analysis. The iEMG data 
were collected during a sustained voluntary isometric 
contraction lasting 12–15 s at 25% MVC with a target 
line displayed on a screen in front of the participants. 
Participants had ~ 30 s rest between each contraction. 
To avoid repeat sampling of the same MUs, after each 
contraction, the needle electrode was repositioned 
by rotating 180° and withdrawing by approximately 
10–25 mm to obtain a minimum of 6 recordings from 
spatially distinct areas (from deep to superficial por-
tions) [56]. The iEMG signals were analysed and 
converted into motor unit potential trains (MUPTs) 
using decomposition based quantitative electromyo-
graphy software (DQEMG) [57]. Extracted MUPTs 
with fewer than 40 motor unit potentials (MUP) were 
excluded. We have previously reported MUP size 
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parameters in a similar cohort as a direct group com-
parison [56]. Here, we report MU firing rate (FR), 
MUP duration and MUP complexity (number of 
turns) (Fig. 1) [16].

Statistical analysis

Descriptive statistics in men by athletic status are pre-
sented as mean ± standard deviation (SD). Between-
group differences in functional measures and circulat-
ing hormones were assessed using one-way ANOVA 
followed by Tukey’s post hoc analysis. As multiple 
MUs were recorded from each participant, multi-level 
linear regression models were used to investigate the 
associations between hormones and MU properties, 
with each individual being regarded as an independ-
ent cluster and athletics status as a covariate. These 
results are displayed as coefficients estimate (beta and 
95% confidence intervals) and p values. Significance 
was assumed when p < 0.05. All statistical analyses 
were performed using STATA-version 16 SE software 
(StataCorp, College Station, Texas) and the Figs. 2, 3, 
and 4 were created in RStudio version 4.0.2.

Results

Forty-three men were included in the analyses, con-
sisting of 18 elderly controls (mean ± SD age: 70.7 
± 3.7  years), 14 masters endurance athletes (68.6 
±  3.6), and 11 masters power athletes (70.5  ±  6.8) 
(Table 1).

Power masters athletes had greater muscle size 
than endurance and controls (both p < 0.05). There 
was no difference in lean mass or grip strength 
between groups. Power athletes exhibited greater 
jump power than endurance (p = 0.014), with no dif-
ference compared to controls (p = 0.134). Both endur-
ance and power masters athletes had better TUG per-
formance (p < 0.05) than their age-matched controls. 
Endurance athletes had lower fat mass and MU FR 
compared to controls and power athletes (p < 0.001). 
There were no significant differences in MUP dura-
tion or complexity between the groups (Table 1).

Lower levels of E2 were observed in endur-
ance masters athletes when compared to controls 
(p = 0.016) and power athletes (p = 0.036). There were 
no differences in serum concentrations of DHEAS, 
DHEA, T, or DHT between the three groups (Fig. 2).

After adjusting for athletic status, for every unit 
increase in DHEAS, PQCSA increased by 4.07 
 cm2 (95% CI, 1.93 to 6.20, p < 0.001) (Fig.  3c). 

Fig. 1  Example MUP templates (top) and 10 consecutive 
observations of the same MUP (bottom, raster plot) used to 
determine MUP duration, complexity (number of turns (T)) 
and firing rate. Inter-discharge intervals (IDIs, seconds) are 
shown to left of each MUP in the raster plot, corresponding to 
a firing rate of approximately 10.1 Hz (a) and 8.8 Hz (b)
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Fig. 3  Forest plot for regression coefficient estimate (beta and 
95% confidence interval) for unadjusted (orange) and adjusted 
(+ athletic status, blue) associations between hormone lev-
els and physical function parameters in trained and untrained 
older adults. Beta represents the difference in outcome for 

1-unit change in predictor (endocrine parameters). PQCSA, 
peak quadriceps cross-sectional area; TUG, timed up and go; 
DHEAS, dehydroepiandrosterone sulphate; DHEA, dehydroe-
piandrosterone; DHT, dihydrotestosterone. a Learn mass; b Fat 
mass; c PQSA; d Jump power; e Grip strength; f TUG 
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Similarly, for every unit increased in E2, jump 
power increased by 0.005  W/kg on average (95% 
CI, 0.001 to 0.01, p = 0.020) (Fig.  3d). Moreover, 
E2 was positively related to fat mass (β = 0.06; 
95% CI, 0.01 to 0.11; p = 0.019) (Fig. 3b), becom-
ing non-significant in adjusted models (p = 0.346). 

There were no significant relationships between any 
circulating sex hormones and lean mass (Fig.  3a), 
grip strength (Fig. 3e) or TUG (Fig. 3f) after adjust-
ment for athletic status. (The detailed coefficient 
estimates can be found in Supplementary Material 
Table S1).

Fig. 4  Forest plot for 
regression coefficient 
estimate (beta and 95% 
confidence interval) for 
unadjusted (orange) and 
adjusted (+ athletic status, 
blue) associations between 
hormone levels and motor 
unit (MU) features in 
trained and untrained older 
adults. Beta represents the 
difference in outcome for 
1-unit change in predictor 
(endocrine parameters). 
MUP, motor unit potential; 
MUP complexity is defined 
as the number of turns; 
DHEAS, dehydroepiandros-
terone sulphate; DHEA, 
dehydroepiandrosterone; 
DHT, dihydrotestosterone. 
a MUP complexity; b MUP 
duration; c MUP firing rate

Table 1  Participant 
characteristics by athletic 
status

Data are mean ± standard 
deviation
PQCSA, peak quadriceps 
cross-sectional area; TUG 
, timed up and go; MUP, 
motor unit potential
The values in bold in the 
tables reflect statistically 
significant (p < .05) 
differences between groups. 
aSignificant difference to 
CON; bsignificant difference 
to EMA. All MUP features 
were recorded at 25% MVC

Control (CON) Masters Endurance 
athletes (EMA)

Masters power 
athletes (PMA)

No 18 14 11
Age, y 70.7 ± 3.7 68.6 ± 3.6 70.5 ± 6.8
Physical properties
Lean mass, kg 54.95 ± 5.3 54.48 ± 5.9 58.48 ± 4.0
Fat mass, kg 16.87 ± 4.7b 7.92 ± 3.3 13.80 ± 5.3b

PQCSA,  cm2 62.2 ± 7.4 64.8 ± 11.0 75.8 ± 12.4ab

Grip strength, N 43.2 ± 6.3 41.0 ± 4.9 44.3 ± 5.2
Jump power, W/kg 2.47 ± 0.37 2.29 ± 0.31 2.79 ± 0.56b

TUG, s 5.91 ± 0.43 5.41 ± 0.42a 5.36 ± 0.66a

MUP features
Complexity (no. of turns) 4.23 ± 0.81 4.51 ± 0.93 4.25 ± 1.1
Duration, ms 16.3 ± 1.87 16.15 ± 3.01 15.72 ± 2.07
Firing rate, Hz 9.11 ± 1.19b 8.30 ± 1.01 9.61 ± 1.69b
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In both unadjusted and adjusted (for athletic status) 
analysis, DHEA showed a positive association with 
MU FR (β = 0.15; 95% CI, 0.02 to 0.27; p = 0.019) 
(Fig. 4c), and negative associations with MUP dura-
tion (β =  − 0.24; 95% CI, − 0.46 to − 0.01; p = 0.040) 
(Fig.  4b). Both T (β =  − 0.05; 95% CI, − 0.09 
to − 0.002; p = 0.006) and E2 (β =  − 0.01; 95% 
CI, − 0.02 to − 0.002; p = 0.019) were negatively asso-
ciated with MUP complexity (Fig. 4a). No significant 
relationships were observed between DHT and any 
MUP features (The detailed coefficient estimates can 
be found in Supplementary Material Table S2).

Discussion

To our knowledge, this is the first study using com-
binations of MRI, DXA, intramuscular EMG and 
mass spectrometry techniques to explore associations 
between circulating sex hormone levels and MU char-
acteristics in elite masters athletes. Although there 
was no difference in androgen concentrations across 
our groups, we show that power masters athletes gen-
erally had more favourable physical characteristics. 
We demonstrate that DHEA has a positive associa-
tion with MU FR in elderly men. Additionally, the 
identification of an association between T levels and 
reduced MUP complexity suggests decreased electro-
physiological temporal dispersion (increased activa-
tion synchronicity of MU fibres) in those with higher 
T levels. We also demonstrate that estrogen levels 
are positively associated with muscle power in both 
untrained and highly active older men.

Both longitudinal and cross-sectional studies have 
reported a downregulation of DHEA and its sulphate 
with ageing [24–26, 28], which has been suggested to 
be an independent predictor of muscle strength, mus-
cle mass or muscle quality in elderly men and women 
[58, 59]. Chronic resistance exercise training has the 
benefit of elevating plasma and/or muscle levels of 
DHEA and T, and concurrently induces muscle size 
in older men [28, 32]. However, although a 12-week 
resistance exercise training regime appeared to atten-
uate age-related hormone reductions, there was no 
significant correlation between hormone levels and 
muscle strength or muscle mass [28]. Somewhat con-
trary to this, our study did show a positive association 
between DHEAS and quadriceps muscle size in old 
controls and elite athletes, which was independent of 

athletic specialism. Although observational, our find-
ings further support previously reported associations 
between androgenic hormones and muscle size in 
older males [58].

In addition to its positive effects on cognition 
[60], notable evidence to date demonstrates that 
DHEA acts as a neurosteroid, regulating the motil-
ity and/or growth of neocortical neurons in the cen-
tral nervous system [61]. DHEA is also known to 
influence neuronal excitability via the modulation 
of neurotransmitter receptors, such as N-methyl-D-
aspartate (NMDA), gamma-aminobutyric acid type 
A  (GABAA), and sigma receptors [62, 63]. Addi-
tionally, DHEA also contributes to neurogenesis and 
neuroprotection by mediating brain-derived neuro-
trophic factor (BDNF) [64, 65], which further regu-
lates axonal regeneration, neuromuscular connections 
and ultimately, muscle force production. Increases in 
generation of force rely, in part, on MU FR, which 
responds differently to ageing and exercise training 
[66, 67]. Several studies have reported an apparent 
age-related decrease in MU FR, negatively influenc-
ing force production [11, 16, 68–70], and MU FR 
can be altered in response to exercise in young [71, 
72] and older [73] people. The relationships between 
DHEA and MU FR with muscle strength have been 
established separately in humans [58, 73], and the 
positive associations between DHEA and MU FR 
during a submaximal contraction shown here high-
light DHEA as a potential therapeutic intervention to 
increase MU FR, known to decrease with age and a 
probable factor in limiting neuromuscular function 
[11].

The number of MUP turns reflects the level of com-
plexity of the MUP; greater turns indicate greater elec-
trophysiological temporal dispersion. Notably, higher 
DHEA levels were associated with shorter MUP dura-
tions, also a measure of temporal dispersion. The nega-
tive associations between androgens and MUP tempo-
ral dispersion may be explained by greater MU fibre 
activation synchronicity or smaller conduction time 
differences along axonal branches and/or MU fibres, 
which is partly attributable to fibre conduction velocity 
[74–76]. Animal studies have demonstrated that andro-
gens positively influence neural plasticity and axonal 
regeneration following nerve injury [77–79], and the 
potential ability of androgens to accelerate MU remod-
elling relies on the existence of androgen receptors 
(AR) [80], and androgen/AR signalling may improve 
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neural transmission, motoneuron soma and dendrite 
size, and nerve regeneration [81]. Importantly, ARs 
are expressed in both motoneurons and muscle fibres, 
and may influence the release of synaptic vesicles and 
neurotransmitters at pre- and post-synaptic elements 
of NMJs directly or indirectly [48]. Androgen admin-
istration in animal models significantly expanded the 
pre- and post-synaptic elements of NMJs in fast twitch 
fibres, resulting in the improvement of neuromuscular 
transmission [47]. Although we did not directly quan-
tify parameters related to androgen/AR signalling in 
these older males, long-term physically trained athletes 
exhibited similar levels of circulating androgens to 
untrained controls.

Circulating levels of E2 are primarily dependent 
on testosterone in males, converted via aromatisation 
partly occurring in adipose tissue. Although there 
were no differences in T concentrations, levels of E2 
were lower in the endurance group when compared to 
controls and power athletes, which suggests an altered 
T:E2 ratio in the endurance athletes. Furthermore, the 
significant association between E2 and fat mass was 
not apparent when adjusting for athletic status, indi-
cating the form of training influenced this relation-
ship and this may be attributable to the lower fat mass 
in endurance athletes [82] and potentially, their lower 
levels of aromatase activity [83, 84].

Previous studies of older females reported a greater 
improvement in muscle strength and power in those 
receiving estrogen hormone therapy [85, 86], and here 
we report a similar association in older men. Moreo-
ver, these associations remained significant in follow-
up analyses when adjusting for T, the precursor of E2, 
indicating total T concentrations do not influence this 
association. Mechanistic insight from animal models 
highlights marked improvements in myosin binding 
with estrogen hormone therapy [87], which may also 
extend to humans. For example, when estrogens were 
diminished, significant decrements in force generation 
were observed, and restored by hormone replacement 
[88]. Although predominantly associated with female 
neuromuscular health, E2 has several functions via 
both alpha and beta E2 receptors. Activation of both 
ERs promote a beneficial effect on bone health as well 
as playing an important role in regulating metabolic 
pathways and adipose tissue functions [89]. Moreover, 
ER-beta knockout mice models highlighted the impor-
tance of this receptor in the regulation of skeletal mus-
cle growth and regeneration [90]. We have previously 

reported that both masters power and endurance ath-
letes exhibited larger MUP size compared to age-
matched controls, indicating a greater level of MU 
expansion [53], with no difference between endurance 
and power athletes, and that exercise has a range of 
established benefits on neuromuscular health. Other 
than E2, the current data shows long-term exercise 
training has minimal effects on circulating hormone 
levels in this age group. Taken together, these data 
suggest aspects of MU remodelling occurring in 
response to lifelong exercise do so independently of 
changes in circulating hormones.

Strengths and limitations

This is the first study to investigate the relationship 
between hormone levels and MU characteristics 
in elite endurance and power masters athletes who 
were current competitors within their respective dis-
ciplines. As there were multiple MUs sampled dur-
ing each muscle contraction, we used a multi-level 
mixed-effect linear regression model, allowing MU 
parameters to be clustered to an individual and over-
come within-individual variability. However, the 
sample size is limited in this rare elite athlete cohort. 
It should be noted that only males were recruited into 
our study, and there is a lack of convincing evidence 
to explain the underlying mechanism of hormones on 
MU characteristics in females. Our study cannot pro-
vide evidence for causality between circulating sex 
hormone levels and neuromuscular characteristics.

Conclusions

This study highlights the associations between cir-
culating sex hormones and MU properties in older 
men. DHEA was positively associated with MU FR 
in these older men, a key component of muscle force 
generating capacity. Higher T levels were associated 
with reduced MUP complexity, indicating reduced 
electrophysiological temporal dispersion, which is 
related to reduced differences in conduction times 
along axonal branches and/or MU fibres. Although 
evident in males only, this work highlights the poten-
tial of hormone administration as a therapeutic inter-
ventional strategy specifically targeting the human 
neuromuscular system in older age.
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